(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
proper(tt) → ok(tt)
and(mark(X1), X2) → mark(and(X1, X2))
x(mark(X1), X2) → mark(x(X1, X2))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(0) → ok(0)
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
top(mark(X)) → top(proper(X))

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6]
transitions:
ok0(0) → 0
active0(0) → 0
tt0() → 0
mark0(0) → 0
00() → 0
top0(0) → 1
proper0(0) → 2
and0(0, 0) → 3
x0(0, 0) → 4
s0(0) → 5
plus0(0, 0) → 6
active1(0) → 7
top1(7) → 1
tt1() → 8
ok1(8) → 2
and1(0, 0) → 9
mark1(9) → 3
x1(0, 0) → 10
mark1(10) → 4
x1(0, 0) → 11
ok1(11) → 4
and1(0, 0) → 12
ok1(12) → 3
s1(0) → 13
ok1(13) → 5
s1(0) → 14
mark1(14) → 5
plus1(0, 0) → 15
mark1(15) → 6
01() → 16
ok1(16) → 2
plus1(0, 0) → 17
ok1(17) → 6
proper1(0) → 18
top1(18) → 1
ok1(8) → 18
mark1(9) → 9
mark1(9) → 12
mark1(10) → 10
mark1(10) → 11
ok1(11) → 10
ok1(11) → 11
ok1(12) → 9
ok1(12) → 12
ok1(13) → 13
ok1(13) → 14
mark1(14) → 13
mark1(14) → 14
mark1(15) → 15
mark1(15) → 17
ok1(16) → 18
ok1(17) → 15
ok1(17) → 17
active2(8) → 19
top2(19) → 1
active2(16) → 19

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(tt) → ok(tt)
proper(0) → ok(0)
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
Tuples:

TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(tt) → c2
PROPER(0) → c3
AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
S tuples:

TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(tt) → c2
PROPER(0) → c3
AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:

top, proper, and, x, s, plus

Defined Pair Symbols:

TOP, PROPER, AND, X, S, PLUS

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing nodes:

TOP(ok(z0)) → c(TOP(active(z0)))
PROPER(0) → c3
PROPER(tt) → c2

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(tt) → ok(tt)
proper(0) → ok(0)
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
Tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
S tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:

top, proper, and, x, s, plus

Defined Pair Symbols:

TOP, AND, X, S, PLUS

Compound Symbols:

c1, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(tt) → ok(tt)
proper(0) → ok(0)
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

top, proper, and, x, s, plus

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(11) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

proper

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(z0)) → c1(TOP(proper(z0)))
We considered the (Usable) Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
And the Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AND(x1, x2)) = 0   
POL(PLUS(x1, x2)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = x1   
POL(X(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1]   
POL(ok(x1)) = 0   
POL(proper(x1)) = 0   
POL(tt) = 0   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [2]   
POL(AND(x1, x2)) = [3]x2   
POL(PLUS(x1, x2)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(X(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = 0   
POL(ok(x1)) = [3] + x1   
POL(proper(x1)) = [2] + [3]x1   
POL(tt) = [2]   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

AND(mark(z0), z1) → c4(AND(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AND(x1, x2)) = x1 + x2   
POL(PLUS(x1, x2)) = x1   
POL(S(x1)) = x1   
POL(TOP(x1)) = 0   
POL(X(x1, x2)) = x2   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   
POL(tt) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

X(mark(z0), z1) → c6(X(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
AND(mark(z0), z1) → c4(AND(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AND(x1, x2)) = [2]x2   
POL(PLUS(x1, x2)) = x2   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(X(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(tt) = 0   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

X(mark(z0), z1) → c6(X(z0, z1))
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
AND(mark(z0), z1) → c4(AND(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

X(mark(z0), z1) → c6(X(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AND(x1, x2)) = [2]x2   
POL(PLUS(x1, x2)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(X(x1, x2)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [2] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(tt) = 0   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:

AND(mark(z0), z1) → c4(AND(z0, z1))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:none
K tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c5(AND(z0, z1))
AND(mark(z0), z1) → c4(AND(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
S(ok(z0)) → c9(S(z0))
S(mark(z0)) → c10(S(z0))
PLUS(mark(z0), z1) → c11(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c12(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c13(PLUS(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AND, X, S, PLUS, TOP

Compound Symbols:

c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c1

(23) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(24) BOUNDS(1, 1)